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Abstract

The energy poor are vulnerable to energy costs, and their vulnerability is expected to increase with climate change.
Therefore, accurately predicting energy poverty can help minimize damage cause by climate change to achieve social
equity. This study aims to develop a series of models to predict energy poverty as well as analyze the relative importances
and partial dependences of predictors by applying machine learning algorithms. Accordingly, we used the 2016 Household
Income and Expenditure Survey data and applied different machine-learning methods, such as Decision Tree, Artificial
Neural Network, Bagging, Random Forest, Extreme Gradient Boosting, and Support Vector Machine. The main results
are as follows: First, the Random Forest model performs the best at predicting energy poverty. Second, household
income, food expenses, living floor area, age of the householder, public transfer income, and educational attainment of
the householder are the most important predictors. Third, using partial dependence plots (PDPs) and accumulated local
effects (ALEs), we identified the nonlinear relationships between the six most important predictors and the response
variable. Based on these findings, we expect to derive meaningful policy implications to identify the traits that affect the

probability of a family's energy poverty.
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| . Introduction

In modern society, people of all social classes should be
able to afford a certain level of energy consumption. Those
who are unable to consume the necessary amount of energy
may undergo a decrease in physical functions, which may
lead to severer health problems (Bouzarovski and Petrova,
2015). In the long term, the lack of sufficient heating and

cooling due to energy poverty can cause diseases, such as

chronic diseases, in the residents, and deteriorate the mental
health by causing depression and stress (Lacroix and Cha-
ton, 2015; Bosch et al., 2019). Therefore, more emphasis is
put on the policies of energy welfare.

Starting from the UK, discussions on energy poverty have
recently been reactivated in EU countries, including France
and Spain (Hills, 2011, 2012; Romero et al., 2018). Many previ-
ous studies were conducted by using the TPR (Ten Percent
Rule), proposed by Boardman (1991) as an indicator. However,
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as the TPR has a limitation that the high-income house-
holds that consume a large amount of energy may also be
included in the energy-poor class, different multidimen-
sional energy poverty indicators have been developed for a
fresh new approach, including the LIHC (Low-Income
High- Cost) by Hills (2011) and the MIS (Minimum Income
Standard) by Moore (2012).

The major factors to energy poverty include the house-
hold characteristics, such as household income, household
members, and elderly household; the householder charac-
teristics, such as the householder age, gender, and educa-
tion; the consumption characteristics, such as housing cost
and food cost, and the residential characteristics including
the dwelling area and homeownership (Healy and Clinch,
2004; Palmer et al., 2008; Maxim et al., 2017; Abbas et al., 2020;
Legendre and Ricci, 2015).

While various studies have been conducted in Western
countries including the UK, France, and Spain, few studies
have been conducted in South Korea to analyze the factors
to energy poverty. In addition, most of the previous studies
were conducted by applying the traditional statistical tech-
niques such as the logistic regression analysis, but few studies
have been done to predict energy poverty by using machine
learning algorithms.

With the recently increasing interest in the prediction of
the targets of policies in the design of welfare policies, more
and more studies about poverty are carried out by applying
machine learning algorithms (Ajay etal., 2019; Verme, 2020)
This is because machine learning algorithms are evaluated
to have excellent performance in not only solving the policy
prediction problems about ‘who’ should be the most appro-
priate targets of the policy but also exploring the nonlinear
relations between the response variables and the predictor
variables (Chalfinet al., 2016; Kleinberg etal., 2015).

In this context, the purpose of the present study is to apply
machine learning algorithms that are suitable for the opti-
mization of the prediction performance to develop a model
for predicting the energy poverty in Korea and analyze the
relative importance, the partial dependence plots (PDP) and
the accumulated local effects (ALE) of the predictor vari-
ables. For this purpose, prediction models were developed
by applying five machine learning algorithms, which are
decision tree, bagging, random forest, extreme gradient

boosting, and support vector machine, and the predictive
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power of the models was comprehensively evaluated to
derive the optimal model.

The structure of this article is described below. Chapter 2
introduces the definition and measurement of energy pov-
erty and reviews the previous studies about the factors to
energy poverty. Chapter 3 describes the data used in this
study as well as the variable measurement and the method-
ology. Chapter 4 presents the results of the comparison of
the performance between the developed prediction models
and discusses the importance and partial dependence of the
predictive factors. Finally, Chapter 5 summarizes the analyt-

ical results and presents the policy implications.

I1. Theoretical Background and Previous
Studies

1. Definition and measurement of energy
poverty

The concept of energy poverty, initially emerging from
the UK in the 1980s, has been discussed in various ways, but
it is interchangeably used with the terms such as fuel pov-
erty and energy burden. For example, fuel poverty is defined
in the UK as ‘a household below the poverty line that needs
to spend more than 10% of its income on fuel to use energy
service of an appropriate level.” In the US, the concept of
energy burden is used on behalf of energy poverty. The
energy burden is divided into home energy burden and resi-
dential energy burden; the former includes the energy cost
for heating and cooling, and the latter includes the energy
cost for not only heating and cooling but also the energy
cost directly related to daily living, including the cost for
lighting, hot water, and cooking.

Energy poverty can be measured in terms of objective
indicators and subjective indicators. The objective indicators
are objective items or standards that are used by a third
party to measure energy poverty, including the household
income and energy cost, while the subjects indicators are
used to measure energy cost based on the subjective judg-
ment on or the satisfaction with the energy cost that is nec-
essary to maintain the basic living. The representative exam-
ples of the objective indicators are TPR (Tcn Percent Rule),
LIHC (Low Income High Cost), MIS (Minimum Income
Standard), and CEPI (Compound Energy Poverty Indicator),



Comparative Analysis of Energy Poverty Prediction Models Using Machine Learning Algorithms

and the examples of the subjective indicators are FFP (Feel-
ing Fuel Poor) and PEP (Perceived Energy Poverty).

The TPR, the most popular indicator of energy poverty,
was firstly proposed by Boardman in 1991. The TPR defines
an energy-poor household as ‘a household of which neces-
sary energy expenditure is 10% or higher than the income.’
The household income means the disposable income, and
the necessary energy expenditure means the cost of fuel
that needs to be spent to maintain a certain range of tem-
perature (18-21C for heating and cooling). The cost of fuel
is not the actual expenditure for fuel but is estimated as the
value obtained by multiplying the theoretical fuel con-
sumption by the average energy price. The TPR can be easily
calculated, but it has a limitation that the high-income class
having a high energy consumption level may also be
included in the energy-poor class (Hills, 2011).

To overcome the limitation of the TPR that it cannot
clearly distinguish income poverty from energy poverty,
Hills (2011;2012) proposed the LIHC. The LIHC considers as
an energy-poor household ‘a household of which the
household income, except the fuel cost and residential cost,
is below the poverty line (below 60% of the median income),
and of which energy expenditure is higher than the median
value of all households.’ The LIHC seems to be useful in that
it reflects the criteria related to not only the income but also
the energy expenditure. However, LIHC has the problem
that a household of which fuel expenditure is lower than
the criterion may be excluded from the energy-poor class,
even ifits actual income level is very low.

Considering the problem, Moore (2012) proposed the
MIS, focusing on the capability of households to pay the
energy expenditure. The MIS defines an energy poor house-
hold as ‘a household of which necessary fuel expenditure is
higher than the amount obtained by subtracting the neces-
sary residential cost and the minimum living cost from its
income.’ The minimum living cost refers to the minimum
cost of acceptable living according to the household type
and the residential area. The MIS is significant because the
fuel cost is calculated in consideration of the minimum cost
of living, unlike the TPR and LIHC. The MIS is difficult to
calculate objectively by applying the same standards because
the minimum cost of living is significantly dependent upon
the social context and the institutional background of differ-

ent countries.

Aguilar et al. (2019) develop the CEPI to reflect both the
low income and the low fuel expenditure. The CEPI defines
an energy poor household as ‘a household of which dispos-
able income is below the poverty line (below 60% of the
median income), and of which energy expenditure is higher
than both the median value of all households and 10% of its
income.” The CEPI can compensate for the limitations of the
TPR and LIHC to capture the characteristics of energy pov-
erty, but it fails to reflect the characteristics and energy effi-
ciency of the residential space.

In contrast to the objective indicators, the subjective indi-
cators are used to measure energy poverty through the sub-
jective evaluation of the self-satisfaction with the energy
consumption, considering that individual households have
different levels of necessary energy consumption. Price et al.
(2012) discussed the FFP, a subjective energy poverty indica-
tor, by using the data from the Family Expenditure Survey
for UK Households. Meyer et al. (2018) employed a subjec-
tive indicator called PEP to investigate energy poverty by
using the data from a survey conducted in Europe. The PEP,
proposed by Meyer et al. (2018), is focused on the capabilities
of households to pay the actual energy expenditure and the
level of recognition. The PEP indicator measures energy
poverty from two perspectives: if the energy expenditure is
burdensome to the household, and if the household is capa-
ble of paying the energy expenditure for the heating and cool-
ing of the house to maintain an appropriate temperature.

In Korea, various approaches have been made to define
and measure energy poverty. For example, Kim (2015)
employed a hybrid-type indicator, defining an energy poor
household as ‘a household incapable of maintaining an
appropriate level of heating or a low-income household of
which the fuel expenditure accounts for 10% or more of the
currentincome.’

Jinetal. (2010), dividing energy poverty into absolute pov-
erty and relative poverty, defined an absolute poor house-
hold as ‘alow-income household in the bottom 30% income
bracket of which energy consumption is below the mini-
mum lightning and heating expense,’ and a relative poor
household as ‘a low-income household of which energy
expense exceeds 11.5% of the disposable income.” Similarly,
Oh and Jin (2021) defined energy poverty as ‘astate of feeling
burdened to pay the expense of energy that is necessary to

keep an appropriate level of living, and divided it into absolute
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energy poverty measured as ‘the ratio of the actually paid
lightning and heating expense to the minimum lightning
and heating expense’ and relative energy poverty measured
as ‘the ratio of energy expense to the income.’

Lee (2019) defined an energy-poor household as ‘a house-
hold in a state of being unable to use the needed energy at
an appropriate level due to an economic reason,” and identi-
fied energy-poor households by surveying ‘whether the
household has experienced discontinuation of the electric-
ity, telephone or water supply or failed to afford heating in
cold winter for being unable to pay at least one of the elec-

tric bill, phone bill and water bill for lacking money.’

2. Factors to energy poverty

The major factors to energy poverty are a high energy
price, a low-income level and, a low energy efficiency
(Palmer et al., 2008; Maxim et al., 2017). A rise in the energy
price reduces the affordable energy resources and increases
the burden of energy expense, resulting in more ener-
gy-poor households. In the UK, for example, the increase of
the energy price by 1% increased the energy-poor house-
holds by about 0.05% (City of Liverpool, 2007). The energy
price is also related to energy accessibility. The energy
expense was found to be higher in the areas where low-in-
come households are concentrated or in the rural areas due
to the lack of accessibility to low-price energy sources
(Crentsil et al., 2019; Tod et al,, 2012). In the low-income
areas or rural areas, the households have no choice but to
utilize relatively expensive fuels such as coals and LPG,
because the urban gas, which is cheap and safe, is not avail-
able there.

On the other hand, low-income households having eco-
nomic difficulties are more likely to be energy-poor house-
holds (Abbas et al., 2020; Healy and Clinch, 2004; Romero et
al,, 2018). A low-income household, which may not afford
the necessary energy, can easily become an energy-poor
household. The energy inefficiency is related to the housing
quality; an older house often has insufficient insulation facil-
ities or a poor residential environment, and thus causes
energy waste, which leads to an increase of the energy
expense (Bouzarovski and Petrova, 2015; Legendre and Ricdi,
2015; Masuma, 2013).

The sociodemographic characteristics of the householder,
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including age, education, gender, and marital status, also
affect energy poverty; a household where the householder
isa woman, low in age and educational level, and lives alone is
more vulnerable to energy poverty (Abbas et al., 2020; Healy
and Clinch, 2004; Legendre and Ricci, 2015; Romero et al.,
2018). This is because a householder who is older and has a
higher educational level utilizes energy more efficiently and
has more experience and knowledge about the household
consumption expenditure appropriate for the household
income. In addition, a female householder has a lower house-
hold income level and a lower residential level and is more
sensitive to the temperature change, and thus is more likely
to be included in the energy poverty class, compared with a
male householder (Abbas et al., 2020; Kaikaew et al., 2018).

The household characteristics, such as a single-person
household, a household with a child, and a household with
a disabled person, also affect energy poverty (Healy and
Clinch, 2004; Legendre and Ricci, 2015). In particular, a
household where there is a household member who is dis-
abled or a child under age is more likely to be in energy pov-
erty (Masuma, 2013; Romero et al., 2018). This is basically
because the people in a socially vulnerable class, such as
children and the disabled, often have a lower income level,
as they have fewer opportunities to participate in the eco-
nomic activities, and they spend more energy to keep an
appropriate temperature and thus have more energy bur-
den, as they stay longer in the houses and are more sensitive
to the temperature change (Kousis et al., 2020; Snell et al.,
2015; Healy and Clinch, 2004)

Besides, other items of living expenses for food, healthcare
and residence are also closely related to energy poverty,
because they affect the energy consumption pattern of
low-income households (Dubois, 2012; Sovacool, 2015). This
is because the money that can be spent on energy is
decreased in the low-income households that spend much
on residence and food. As a result, such households are
more likely to be included in the energy poverty class, as
they are affected by the economic difficulties more seriously.

In addition, residential characteristics, including dwelling
area, type of housing, and type of occupancy, also affect
energy poverty. Although the dwelling area is an important
factor of energy poverty, the results are not consistent. For
example, a study conducted in the UK (Masuma, 2013)

showed that the vulnerability to energy poverty was greatly
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increased when the dwelling area was over 50 m’, but a
study conducted in several East Asian countries (Abbas et
al., 2020) showed that the energy poverty level was
decreased as the dwelling area was increased. In general,
detached houses are more vulnerable to energy poverty
than apartments (Masuma, 2013). In addition, renting
households were found to be more vulnerable to energy
poverty because of the higher hosing cost and the lower
energy efficiency of the houses (Kousis et al., 2020; Legendre
and Ricdi, 2015; Romero et al., 2018).

3. Previous studies on energy poverty

With the increasing interest in the issue of energy poverty,
many studies have been conducted on energy poverty in
Korea and other countries (see Table 1). With regard to the
overseas studies, Masuma (2013) performed a logistic regres-
sion analysis with the energy-poor households in the UK
and reported that single-person households, households
with children under age, unemployed houscholders,
detached houses, private rental houses, wide dwelling areas,
and old houses are positively correlated with the probability
to be predicted as an energy-poor household.

Legendre and Ricci (2015) employed a logistic regression
model to investigate the energy poverty in France, and
showed that people who live together with a spouse, who

have a high education level (master’s degree or higher), and

who are home-owners are less vulnerable to energy pov-
erty, while those who are a retired senior who live alone or
those who live in an old house or have a wide dwelling area
are more likely to be included in the energy poverty class.

Romero etal. (2018) performed a logistic regression analy-
sis in Spain and found that single-person households, house-
holds with children under age, rental houses, unemployed
householders, low-income households, householders with
a low education level, and urban households are move vul-
nerable to energy poverty.

Abbas et al. (2020) analyzed the factors to energy poverty
by applying the Tobit model to 674,834 households in East
Asian countries and reported that wealth, being married and
a large house size decrease the level of energy poverty, while
a large family size, a female householder, a low educational
level, and an old age increase the level of energy poverty.

Most of the studies conducted in Korea are focused on the
analysis of the characteristics of energy consumption and
energy poverty, and few studies have been conducted to
directly deal with the factors to energy poverty. Kim and
Lim (2015) performed a Mann-Whitney nonparametric test
with regard to the energy consumption and energy poverty
of the households with an elderly member and the house-
holds without an elderly member by using the data from
the 2014 Monthly Household Income and Expenditure Sur-
vey and reported that the ratio of the fuel expense to the

income was highest in the households of a single elderly

Table 1. Summary of selected previous study on factors of energy poverty

Authors Study object Method Main factors

Single household(+), Members of children(+), Elderly
. . I . hosehold(-), Unemployed(+), Means-tested benefits(+),

Masuma (2013) UnitedKingdom  Logistic regression Detached dwelling(+), Private rented housing(+), Floor
area(+), Dwelling age(+)

Legendre and Ricci Married couple(-), Children in the household(+), Retired

(231 5) France Logistic regression living alone(+), Master's degree(-), Homeowner(-),
Dilapidated dwelling(+), Living area(+)
Low-income household(+), Single household(+),

. e . Members of children(+), Elderly hosehold(-), Rental

Romero et al. (2018) Spain Logistic regression housing(+), Unemployed householder(+), Low-educated

householder(+), Living in urban area(+)
. OLS and Tobit Wealth(-), Married(-), Family size(+), Female(+),
Abbas et al. (2020) South Asia regression Low-educated(+), Age(+), House size(-)

Single elderly households(+), Low income(+),

Kim and Lim (2015) South Korea Mann-Whitney Low-education(+), Detached dwelling(+)
Absolute energy poverty: Family size(+), Non-recipient of
Oh and Jin (2021) Seoul city Path analysis basic living(+), Floor area()

Relative energy poverty: Low-income household(+),
Family size(+), Floor area(+), Old boiler(+)
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person, and was significantly higher in the households with
a householder having a low educational level and the
households in detached houses.

Oh and Jin (2021) performed a path analysis with respect
to energy consumption and poverty characteristics with the
low-income households in Seoul and showed that the
number of household members, housing type, dwelling
area, and beneficiary of the basic living subsidies have a sig-
nificant effect on the energy consumption and poverty
characteristics. Specifically, the absolute level of energy pov-
erty was higher in the households with many household
members, those whose householders are not a beneficiary of
the basic living subsidies, and those with a smaller dwelling
area. In addition, the relative energy poverty level was
higher in the households with a lower income level, those
with many members, those with a wider dwelling area, and

those with a low heater efficiency.

4. Differences from previous studies

Compared with the previous studies reviewed earlier, the
present study has the differences described below. First, the
subjects of the study are different. Most of the present stud-
ies were conducted in the Western countries, including the
UK, France, and Spain, and only several studies have been
conducted in Korea to analyze the factors to energy poverty.
The previous studies conducted in Korea are mostly focused
on the analysis of the factors to the energy consumption or
the estimation of the size of the energy poverty class. Korea
may show a pattern of energy poverty that is different from
that of Western advanced countries, because of the residen-
tial culture centered on apartments and the high density of
the urban areas. Therefore, analyzing the factors to energy
poverty in Korea is significant in evaluating the applicability
of the overseas studies and the uniqueness of Korea.

Second, the research method is different. Most of the pre-
vious studies were conducted by employing the traditional
statistical techniques such as logistic regression analysis, but
the studies conducted to predict the energy poverty class by
using the machine learning techniques are very few. Most of
the conventional statistical models assume that the relations
between the explanatory variables and the dependent vari-
ables are linear or quadratic, thus lacking suitability to atypical

relations and having limitations in accurately classifying and
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predicting dependent variables (Géron, 2019). The machine
learning-based prediction models allow for flexibly handling
atypical relations between variables and show much higher
predictive power. However, the machine learning tech-
niques also have limitations, because the prediction process
is hard to understand accurately, and the statistical signifi-
cance of the independent variables is difficult to verify.
Despite these limitations, considering that the accurate and
rapid identification of the policy targets is gaining more
importance in policy enforcement, and thus the prediction
models are required to show higher predictive power.
Therefore, the application of machine learning algorithms
is important in predicting energy poverty. In addition, the
present study is meaningful in that the results were com-
pared between the traditional logistic models and the
machine learning models based on various algorithms in

order to evaluate the predictive power.

lll. Study Design

1. Subjects of study and measurement of
variables

The present study was conducted to predict energy pov-
erty by using the 2016 Household Income and Expenditure
Survey. The Household Income and Expenditure Survey,
conducted by the National Statistical Office, is one of the
long-standing cross-sectional surveys that have nation-wide
representativeness. This survey is conducted each month
with the sample households in the entire country by investi-
gating the information related to the household income
and expenditure in order to understand the change of the
income and consumption level of the citizens.

In this study, the annual data from the survey was used
instead of the monthly data in order to control the seasonal-
ity of energy consumption by houscholds (Sharma and
Kumar, 2019). In addition, rather than the data for the latest
year, the data for 2016 was used, because the accurate house-
hold income was difficult to find from the annual data for
2017, as the survey item about household income was
changed from the previous question asking the specific
amount to the new question asking the income quintile
bracket. The annual raw data of the 2016 Household Income

and Expenditure Survey included the survey results from
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8,947 households. The data that was finally used in the pres-
ent study for the analysis included the results from 8,510
households, as the missing values of the household income
or energy consumption and some outliers (0.5% of all sam-
ples) of the dwelling area, housing cost, and healthcare cost

were excluded from the dataset.

Table 2. Variable measurement and descriptive statistics

Table 2 shows the variable measurement and the descrip-
tive statistics. Energy poverty, the response variable, was
defined with reference to the CEPI indicator proposed by
Aguilaretal. (2019) as a household of which income is below
the official public line (60% of the national median income)

and of which the ratio of the fuel expenditure to the average

Item Variable Measure (unit) Mean Median SD Min Max

Household income is below 60% of the
national median for the whole

Response variable Energy poverty households, and energy expenditure is 0.07 0 0.25 0 1
either higher than 10% of their

income=1, otherwise=0

Equivalised

The household disposable income is

income divided by the square root of the 18334 16483 11589 1255 1414.88
household size (per 10,000 won)

Household The number of household members 255 9 121 - 8

members living together

Public-transfer  Subsidies received from the

Household income government (10,000 won) 212 4363 4825 0 337.62
characteristics Sl h Sinal ther h hold=]
ingle mother  Single mother household=1,
household otherwise=0 003 0 018 0 !
Duakincome Dual-income household=1, otherwise=0  0.28 0 0.45 0 1
household
Elderly Elderly household
household (aged 65 and above)=1, otherwise=0 0.19 0 040 0 !
:é’:sem'der Age of the householder 5389 53 1472 19 98
Householder _ -
gender Female=1, male=0 0.30 0 0.46 0 1
3 Not yet attending school=1,
=8 elementary school=2, middle school=3,
8 :ﬁ:%i?grlg%rcs Householder  high school=4, junior college=5, 491 4 155 1 8
< education four-year-course college=6, ’ '
jo)
= graduate school(Master)=7,
= graduate school(Doctorate)=8
Marital status ~ Married=1, otherwise=0 0.70 1 0.46 0 1
Employment N —
status Employed=1, otherwise=0 0.76 1 0.43 0 1
Home-owner  Yes=1, No=0 0.68 1 0.47 0 1
Apartment Living in apartments=1, otherwise=0 0.52 1 0.50 0 1
— Homeowner=1, free=2,
?ﬁ:;gg?:r?sltics Iggi oafnc company housing=3, jeonse=4, 2.29 1 1.94 1 6
pancy permanent lease=5, rent with deposit=6
Dwellingarea  Dwelling exclusive area (m?) 70.58 70 24.21 10 160
City area Living in the city area=1, otherwise=0 0.79 1 041 0 1

Housing cost

Total monthly housing expense

15.37 9.79 18.29 0 147.71

(10,000 won)
Consumption Food cost Total monthly food expense 5614 5193 3099 0 167.92
characteristics (10,000 won)
Healthcare Total monthly health expense
costs (10,000 won) 14.83 8.94 17.57 0 138.95
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monthly income is 10% or higher. The CEPI indicator was
referred to, because it is a recently proposed measurement
indicator that can reflect both the low-income level and the
low fuel expense of energy-poor households, overcoming
the limitations of the conventional TPR and LIHC indica-
tors. In particular, the fuel expense, referring to the cost of
fuel spent on daily housework, including lightning, heating,
cooling, and cooking, includes the expense for electricity,
city gas, heating, and fuels, including Diesel. The monthly
average fuel expense of the sample households was about
88,900 KRW (median: 80,500 KRW) with a maximum of
667,600 KRW and a minimum of 0 KRW.

The predictor variables consisted of household character-
istics, householder characteristics, residential characteristics,
and consumption characteristics. Specifically, the house-
hold characteristics included the variables of household
income, household size, public-transfer members, sin-
gle-mother household, dual-income household, and elderly
household. The household income was measured as the
equivalized disposable income in consideration of the number
of household members living together. The household size
was measured as the number of household members living
together. The public-transfer income included the govern-
ment subsidies, including public pension, unemployment
benefits, and housing benefits. The single-mother house-
hold was defined as a household consisting of a female
householder and a child under the age of 18 years. The
dual-income household was defined as a household in
which the couple (householder and the spouse) are both
employed whether they live together or not. Finally, the
elderly household was defined as a household including a
household member who is at the age of 65 years or older.

The householder characteristics included age, gender,
education, marital status, and employment status. The
householder gender was set to be female in the default set-
ting. The default setting for education was ‘Not yet attend-
ing school,” and other options included an elementary
school, middle school, high school, junior college, four-
year-course college, graduate school (master), and graduate
school (doctorate). The default marital status was ‘Married.’
The employment status was about the employment of the
householder.

The residential characteristics consisted of home-owner,

apartment, type of occupancy, dwelling area, and city area.
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The consumption characteristics consisted of the housing

cost, food cost, and healthcare cost.

2. Machine learning algorithms

1) Decision tree

The decision tree is an algorithm where tree-like struc-
tures connected with nodes are formed to find out through
learning the patterns or rules included in the data and pre-
paring them as models to perform classification and predic-
tion (Breiman et al., 1984). The decision tree algorithm con-
sists of steps of growing, pruning, validation, and prediction
and interpretation. In the growing stage, considering the
data structure and purpose of the analysis, appropriate split-
ting criteria and stopping rules that determine the time for
expanding the nodes are designated to form a tree structure.
In the pruning step, the branches that may cause an overfit-
ting issue are removed. In the validation stage, the decision
tree is evaluated by using a risk chart, profit chart, or
cross-validation with test data. In the final stage of prediction
and interpretation, the established tree model is finally pre-
dicted and interpreted.

The splitting criterion is purity or impurity which represents
the degree of distribution of the target variable. A splitting
variable that maximizes the sum of purity or one that mini-
mizes the sum of impurity is finally selected as the splitting
criterion. The impurity indexes of the decision tree include

classification error, the Gini index, and the entropy index.

2) Bagging

Bagging, an abbreviation of bootstrap aggregating, is an
algorithm for an ensemble learning-based model. In this
algorithm, 7 datasets are generated from a single piece of
training data through bootstrap re-sampling, and the indi-
vidual datasets are aggregated to make # models for the vot-
ing of the final model based on the mean predictive values
of the models (Breiman, 1996). Ensemble learning is a tech-
nique to generate several single learners and combine the
prediction results from the learners in order to derive a
more accurate learner. Bagging generally shows good pre-
diction performance in an unbiased and stable model.
Therefore, the growing of the tree is set to be the maximum,
and pruning is skipped in many cases where bagging is

applied.
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3) Random forest

Random forest is an algorithm for an ensemble learn-
ing-based model, and it combines many decision trees
through the basic principles of bagging and the bootstrap
method (Breiman, 2001). In particular, in the random forest
algorithm, the samples and the predictor variables are ran-
domly set up through bootstrapping to repeatedly consti-
tute independent decision trees and thereby reduce the pre-
diction errors. Since a greater number of decision trees
allows for the establishment of a more stable and accurate
model, the random forest algorithm can increase the predic-
tion power of a model by overcoming the limitations of a
single decision tree or bagging, such as the low stability and
accuracy and the overfitting issue. In the random forest algo-
rithm, the model performance is evaluated by using Out-of-
bag (OOB), which refers to the data that is not extracted in
the bootstrap sampling and is used in behalf of a test set. The
random forest algorithm can provide the OOB error.

The random forest algorithm can use the predicted error
rate for classification or the Gini index to provide the relative
importance of the predictor variables in two different ways.
The first is to calculate the mean decrease accuracy (MDA).
The basic idea is to calculate the error rate for classification
(or accura.cy) in random trees generated each time, calcu-
late the error rate for classification again after excluding spe-
cific predictor variables, and then compare the two calcula-
tion results. If the excluded variable is not significant, there
will be no significant difference between the two calculation
results. A standardized MDA of the predictor variables is
obtained by repeatedly performing the calculation process.
A higher MDA means higher importance of the predictor
variable. The second is to calculate the mean decrease Gini
(MDG) based on the mean decrement of the Gini index
when a predictor variable is divided from all random trees.
The higher the importance of the predictor variable, the
more decrement of the Gini index by the division. However,
the MDA is used more often in practice, because the MDG is
biased and has been known to fails to provide robust results
(Sandri and Zuccolotto, 2010).

On the other hand, the random forest algorithm provides
partial dependence upon the predictor variables, which rep-
resents the average marginal effect of the predictor variables
on the response variable (Friedman, 2001; Liaw and Wiener,

2002). The partial dependence upon an individual predictor

variable is to investigate the detailed relationships between
the predictor and the response variable by calculating the
prediction probability of the response variable while con-
trolling for the average effects of the other predictor vari-
ables (Greenwell, 2017: 422).0 However, since the analysis of
the partial dependence plots (PDP) may be biased when the
correlations between the predictors are high, various other
methods have recently been proposed as alternatives,
including Individual Conditional Expectation (ICE), SHap-
ley Additive exPlanations (SHAP), and Accumulated Local
Effects (ALE) (Molnar, 2020). In particular, the ALE analysis
is considered more unbiased, because the average effects of
the predictor variables on the response variable may be
understood, and the analytical results are unaffected by the
correlations of the predictor variables (Molnar, 2020).

4) Extreme gradient boosting

XGBoost, the abbreviation of Extreme Gradient Boosting,
is an algorithm upgraded from the existing Gradient Boost-
ing Machine (GBM) (Chen and Guestrin, 2016). XGBoost
also employs the decision tree as a boosting method, like the
GBM, but the learning or classification speed, based on par-
allel processing, is much faster than that of the GBM. In
addition, the prediction model has robustness due to the
overfitting regularization, and the built-in cross-validation
function makes the verification easy. Boosting refers to the
method to sequentially train weak learners, and give weight
to erroneously predicted data to improve the error in order

to produce strong learners.

5) Support vector machine

The Support Vector Machine, proposed by Vapnik and his
colleagues, is a machine learning algorithm to find out a
hyperplane in a higher-dimensional space to perform classi-
fication or regression (Boser etal., 1992). The Support Vector
Machine generally obtains a hyperplane that best classifies
the data to classify the data into groups of similar values, and
the hyperplane has a boundary surface where the margin of
the individual groups is the maximum. The margin means
the distance from the hyperplane that distinguishes the
classes to training data near to the hyperplane. The training
data positions at the hyperplane are called support vectors.
Generally, the boundary of a support vector machine has a

linear hyperplane when the boundary can be divided lin-
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early. In a nonlinear case, the hyperplane is found by using
slack variables and applying a radial basis function kernel

that allows a measure of classification errors.

6) Artificial neural network

The Artificial Neural Network (ANN), a part of the artifi-
cial intelligence theory, is a model that is realized by imitat-
ing through a computer the information processing in the
human brain, such as information transfer, decision-mak-
ing, and learning (McCulloch and Pitts, 1943; Rosenblatt,
1958). The ANN basically consists of an input layer, a hidden
layer, and an output layer, each of which has at least one
node (or neuron). In particular, the nodes in each layer are
connected with the nodes in another layer through weight.
In the training process, the training data given to the input
layer are summed up according to the weight, converted
into an activation function in the hidden layer, and then
transferred to the output layer.

Generally, the ANN employs a feed-forward or
back-propagation method. In the feed-forward method, the
operation of the given training data is performed in the for-
ward direction from the input layer to the output layer. In
the back-propagation method, the errors are firstly esti-
mated with respect to the training data, and modified in the
opposite direction from the output layer to the input layer
(Rumelhartetal., 1986).

3. Performance evaluation method and analysis
process

In the present study, a confusion matrix was used to eval-
uate the performance of the prediction model established by
machine learning. Confusion matrices are classified into
four categories: TP (True Positive), TN (True Negative), I'P
(False Positive), and FN (False Negative). TP refers to the case
where the actual observation and the prediction are both
positive; TN refers to the case where the actual observation
and the prediction are both negative; FP refers to the case
where the actual observation is negative but the prediction is
positive; and FN refers to the case where the actual observa-
tion is positive but the prediction is negative.

In a study conducted by machine learning, a confusion
matrix is used to provide the probabilistic performance eval-

uation indexes, such as accuracy, specificity, precision, recall,
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and Fl-score. The accuracy refers to the ratio of correctly
predicted observations to the total observations; the specific-
ity refers to the ratio of correctly predicted negative observa-
tions to the total actual negative observations; the precision
refers to the ratio of correctly predicted positive observations
to the total predicted positive observations; the recall refers
to the ratio of correctly predicted positive observations to
the total actual positive observations; and the Fl-score refers
to the harmonic mean of the precision and the recall?

The present study was conducted by using the data from
the 2016 Monthly Household Income and Expenditure Sur-
vey with a total of 8814 observations from the samples. To
evaluate the performance of the prediction model, 70% of
the data was randomly allocated to a training dataset, and
the remaining 30% to a test dataset. Next, to prevent the
overfitting issue and find the optimal parameters in the data
training process, the hyper-parameters of the prediction
model were verified through 3-repeated 10-fold cross-vali-
dation. In other words, the original training data were ran-
domly split into 10 new training data and validation data,
and the resulting 10 evaluation data were used three times
repeatedly to conduct the performance validation process.
The optimal prediction model was derived by using the per-
formance evaluation indexes, such as accuracy, specificity,
recall, precision, and Fl-score. Based on the final prediction
model, the relative importance of the predictor variables
and the detailed relations with the response variable were

investigated by analyzing the PDP and ALE.
IV. Analytical Results

1. Establishment of the optimal prediction model

The accuracy of learning is generally increased in machine
learning, as the epochs are increased. However, the increase
of the epochs may cause an overfitting issue. To prevent
overfitting, early stopping or K-fold cross-validation is usu-
ally carried out. In this study, 3-repeated 10-fold cross-valida-
tion was performed to establish an optimal prediction model.

1) ANN
The ANN model employed in this study is a simple pre-
diction model consisting of an input layer, a hidden layer,

and an output layer. Specifically, the mean accuracy was
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performed through cross-validation by setting the hidden
unit to 1, 3 and 5 and the weight decay to 0, 0.0001, and 0.1.
According to the test results, a model having a weight decay
of 0.1 and a single hidden unit showed the highest accuracy
0f 0.9377, and thus was derived as the optimal model.

2) Decision tree

In the decision tree algorithm, a complexity parameter is
generally used in the pruning stage to prevent the overfit-
ting issue by controlling the tree size. The complexity
parameter, which is a weight combining the error rate for
classification and the leaf node, is used to control the com-
plexity of the tree. In this study, the complexity parameter
was set to be 0.0208, 0.0718, and 0.0868 for each cross validation
to calculate the average accuracy. The analytical results
showed that the accuracy of the decision tree model was
0.9411, which was the highest, when the complexity param-
eter was (.0208.

3) Random forest

In the random forest algorithm for an ensemble learning
model, it is critical to appropriately determine the number
of trees (ntree) and the number (mtry) of the predictor
variables that are used to split the tree nodes. The model
performance is generally increased, as the number of trees is
increased.

In the present study, the number of the predictor variables
used in the tree node splitting was set to be 2, 10, and 10, and
the number of the trees was increased from 300 to 800 to cal-
culate the average accuracy through cross-validation. The
analytical results showed that the model accuracy was high-
est at 0.9514 when the number of the used predictor vari-
ables was 10 and the number of the tress was 500, and thus

the model was selected as the optimal model.

4) Extreme gradient boosting

In XGBoost, hyper-parameter tuning is necessary to pre-
vent overfitting and derive an optimal prediction model. In
this study, the learning rate was set to 0.3 and 0.4, the num-
ber of times of tree repetition and boosting (nrounds) 1,2,
and 3, and the maximum tree depth (max_depth) to 1,2,
and 3. Tn addition, the ratio of the predictor variables used in
the tree generation was set to 0.6 and (.8, and the ratio of the

random samples used in the tree generation to 0.5, 0.75, and

1 to perform cross-validation and calculate the accuracy of
the prediction model. The analytical results showed that
model accuracy was highest as 0.9502 when the learning rate
was 0.3, the number of times of tree repetition and boosting
was 50, the maximum tree depth was 3, the ratio of the pre-
dictor variables used in the tree generation was 0.8, and the
number of the random samples was 1. Therefore, the model

was selected as the optimal XGBoost model.

5) Support vector machine

In the support vector machine, the radial basis function
(RBF) kernel is generally used to predict the nonlinear
characteristics vector. In particular, the improvement of the
prediction performance of an RBI-based model requires the
optimal combination of the cost parameter, which controls
the penalty for the classification error, and the sigma value,
which controls the nonlinearity of the kernel function.

In the present study, the cost parameter was set to (.25, (1.5,
and 1, and the sigma to 0.0211, 0.0302, and 0.0405 to calculate
the average accuracy through cross-validation. The support
vector machine having a cost parameter of 1 and a sigma of
0.0405 showed the highest accuracy of 0.931 and thus was

selected as the optimal model.

2. Performance evaluation results of prediction
models

In the present study, models for predicting the energy
poverty class were established by using the traditional logis-
tic, ANN, decision tree, bagging, random forest, EGBoost,
and support vector machine algorithms, and their predic-
tion performance was compared. As shown in Table 3, the
accuracy, representing the performance of the prediction
models, was 89.59% in the logistic model, 94.37% in the ANN
model, 94.11% in the decision tree model, 94.24% in the bag-
ging model, 95.14% in the random forest model, 95.02% in
the EGBoost model, and 93.10% in the support vector
machine model, indicating that the accuracy was highest in
the random forest model. This means that the ratio of the
number of correctly predicted households to the total
number of the subject households was highest in the ran-
dom forest model. The specificity was much lower than the
accuracy in all the models, but the XGBoost model showed

the highest specificity among all the prediction models.
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Table 3. Performance evaluation of machine learning models

et Aifcagersl Deon  peggng  Fandom  Eremegraden  Support vecto
Accuracy 0.8959 0.9437 0.9411 0.9424 09514 0.8502 0.9310
Specificity 0.2971 0.4029 0.5486 0.4514 0.5686 0.5714 0.2685
Precision 0.8636 09124 0.9668 0.9603 09716 0.9604 0.9315
Recall 0.8791 0.9498 0.9464 0.9786 0.9874 09794 0.9726
F1-score 0.8713 0.9307 0.9565 0.9694 0.9794 0.9698 0.9516
nrounds=50,
;iggs:i;):triir:eter none d:ci,‘zi;BJ cp=0.0208 none nr;terg:ggo m:%ii?[;& sigme(l;(%.0405

colsample_bytree=0.8

Note: size-hidden unit; decay-weight decay; cp-complexity parameter; mtry-number of variables randomly sampled; ntree-number of trees; nrounds-num-
ber of rounds for boosting; max_depth-maximum depth of a tree; eta-learning rate; gamma-minimum loss reduction; colsample_bytree-fraction of

columns to be subsampled; C-cost parameter; sigma-sigma parameter.

The recall, referring to the ratio of predicting the actual
energy-poor households as an energy-poor household, was
highest in the random forest model (97.16%). The precision,
referring to the ratio of the actual energy-poor households
to the household predicted as an energy-poor household,
was also highest in the random forest model (98.74%). The
Fl-score, considering both the recall and the precision, was
also highest in the random forest model (97.94%).

Summarizing the test results described above, the random
forest model was found to be the best in the overall predic-
tion of energy poverty with respect to 4 evaluation indexes
out of 5. Therefore, the random forest model was selected as
the final model and analyzed in terms of relative impor-

tance, partial dependence, and ALE.

3. Relative importance

The effects of the predictor variables are generally difficult
to analyze in a model based on machine learning, but the
relative importance of the predictor variables may be inves-
tigated in a random forest model. While the traditional sta-
tistical models provide an absolute measure, the statistical
significance of the predictor variables, only the relative
importance of the variables can be found in machine learn-
ing-based models. Nevertheless, the relative importance
helps to identify the variables that should be firstly taken
into consideration when the prediction is performed from
limited data. Figure 1 shows the relative importance of the

predictor variables of energy poverty with reference to the
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Female householder
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Figure 1. Variable importance plot (MDA)
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MDA. The top 10 predictor variables in terms of relative
importance were household income, food expense, living
floor area, householder age, public-transfer income, house-
holder education, household size, elderly household,
dual-income household, and type of employment.
Although not shown here, these variables were all verified
in the logistic regression model as significant variables
within a significant level of 10%. The key analytical findings
are described below.

First, 5 out of the top 10 predictor variables in the relative
importance were related with the household characteristics,
which are household income, public-transfer income,
dual-income household, household size, and elderly house-
hold. Notably, the relative importance of household income
(133.58) was much higher than that of other predictor vari-
ables, suggesting that houschold income is the most import-
ant factor in the prediction of energy-poor households.

Second, among the household characteristics, pub-
lic-transfer income was found to be the 5° important pre-
dictor variable, which means that public assistance from the
government is an important factor in relieving the eco-
nomic burden of the energy-poor households.

Third, among the residential characteristics, the living
floor area showed high prediction power in predicting
energy poverty. This suggests that the living floor area is an
important factor in the prediction of energy poverty.

Fourth, the relative importance of food expense, a con-
sumption characteristic, was higher than that of house-
holder age and householder education. This shows that
food expense is more important than the demographic vari-
ables about houscholders in the prediction of energy-poor
households.

4. Partial dependence and accumulated local
effects

The previous section of this article provides the impor-
tance of the predictor variables of energy poverty, but how
the predictor variables are related to energy poverty is not
identified. The random forest model allows for flexibly
exploring the relationships between the predictor variables
and the response variable because the relations are not
assumed to be linear.

Figure 2 shows the partial dependence of the top 6 import-

ant predictor variables, which are household income, living
floor area, food expense, public-transfer income, house-
holder age, and householder education. The partial depen-
dence represents the average marginal effect with respect to
the probability of being predicted as energy poverty depend-
ing on the change of the predictor variables. The key find-
ings are described below.

First, the probability of being predicted as energy poverty
was increased, as the household income, one of the house-
hold characteristics, was increased by one unit. However, the
probability of being predicted as energy poverty was drasti-
cally decreased, as the household income was increased over
1,470,000 KRW. As of 2016, the minimum cost of living for
3-person households was about 1,430,000 KRW, which was
similar to the boundary value derived in the present study.
This suggests that the probability of being an energy-poor
household may be drastically increased, as the household
income is decreased below the minimum cost of living.

Second, the probability of being predicted as energy pov-
erty was continuously increased, as the living floor area, one
of the residential characteristics, was increased by one unit.
However, the probability of being predicted as energy poverty
was considerably decreased, as the living floor area was
increased over about 60 m’. Since the houses smaller than 60 m’®
are commonly classified as small houses, these results show
that the probability of being predicted as energy poverty is
very high among small houses.

Third, the probability of being predicted as energy poverty
was continuously increased, as the food expense, one of the
consumption characteristics, was increased by one unit.
However, the probability of being predicted as energy pov-
erty was gradually decreased, as the food expense was higher
than about 470,000 KRW, which is similar to the average food
expense of low-income households calculated from the 2016
Korea Welfare Panel Study data (420,000 KRW). This means
that the probability of being predicted as energy poverty is
very high among households where the food expense is less
than 470,000 KRW.

Fourth, the probability of being predicted as energy pov-
erty was not significantly dependent upon the householder
age, one of the householder characteristics, in the range
from their 20s to late 50s, but it was significantly decreased
from early 60s. Householders in their 60s usually retire from

economic activities and their children start to form separate
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Figure 2. Partial dependence plots

families. The probability of energy poverty may be decreased
from the householder age of 60s, probably due to the retire-
ment of the householders and the family separation of their
children, which results in a decrease in energy consumption.

Fifth, the probability of being predicted as energy poverty
was continuously decreased, as the public-transfer income,
one of the household characteristics, was increased by one
unit. The probability of energy poverty was drastically
decreased, as the public-transfer income was increased over
1,320,000 KRW. However, the households that receive this
amount of public-transfer income correspond to the top4.78%
of all the households, and thus the number is very small.

Sixth, the probability of being predicted as energy poverty
was increased, as the householder education, which is one of
the householder characteristics, was increased. However,

when the householder education was elevated from high
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school graduation, the probability of being predicted as
energy poverty was continuously decreased. Therefore, the
plot had an inverse U-shape. This may be because when the
householder education is low, the income level is generally
low but the energy consumption is increased (I_egendre and
Ricci, 2015).

Through the PDP analysis, the random forest model
allowed for exploring the nonlinear relations between the
predictor variables and the response variable, which are diffi-
cult to investigate through the conventional linear model.
However, an alternative is needed, because the PDP analysis
may be biased when the predictor variables are highly cor-
related. Therefore, an ALE analysis was performed in this
study to examine if the PDP analysis is robust. The results of
the ALE analysis showed patterns that are very similar to the

PDP analysis. This means that the results of the PDP analysis
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were robust without being severely biased. This suggests that
the results from the PDP analysis are similar to the results
from the ALE analysis when the predictor variables used in

the model are not highly correlated.

V. Conclusions

The present study was conducted by using the data from
the 2016 Monthly Household Income and Expenditure Sur-
vey to develop models for predicting energy poverty by
applying machine learning algorithms and analyze the
importance and partial dependence of predictor variables.
The key analytical results are described below. First, the ran-
dom forest model showed better performance than other
prediction models in predicting energy poverty. Second, the
analysis of the relative importance of the predictor variables
showed that household income, living floor area, food
expense, householder age, public-transfer income, and
householder education have importance in the prediction
of energy-poor households. Third, the PDP and ALE analy-
ses verified the nonlinear relations between the predictor
variables and the response variable. Specifically, the proba-
bility of being predicted as energy poverty was decreased or
relieved in the cases of the household income over about
1,470,000 KRW, the living floor area over about 60 m’, the
food expense of about 470,000 KRW, the householder age of
60s, the public-transfer income of 1,320,000 KRW and the
householder education of high school graduation or higher.
Based on these results, policy implications are derived for
the promotion of the future energy welfare policies of the
government.

First, as shown by the analytical results, the machine
learning algorithms, including random forest, are useful in
classifying and predicting energy poverty. Therefore, it is
necessary to positively apply machine learning to accurately
support the energy poverty class. Second, since household
income, living floor area, food expense, householder age,
public-transfer income, and householder education are
important in the prediction of energy-poor households, the
energy welfare policies should be prepared by sufficiently
considering such characteristics as household income, living
floor area, householder age, and householder education.
Third, in consideration of the nonlinear relations of the pre-

dictor variables verified in this study, more detailed and flex-

ible support policies are needed to relieve energy poverty.
The thresholds of the predictor variables, such as household
income, householder education, and householder age, may
need to be applied to the implementation of the policies for
covering the energy expense.

The present study is significant in that an in-depth analysis
was performed to investigate the nonlinear relations of
energy poverty in Korea with the predictor variables, which
were not investigated in previous studies, by applying
machine learning. The results of the present study are
expected to provide significant policy implications to accu-
rately understand the households that are more vulnerable
to energy poverty and identify the beneficiaries of the energy
welfare policies more effectively.

Nevertheless, the present has a limitation that the latest
data was not used due to the limitations of the available data.
Future studies may need to be conducted with updated data

to derive more implications.

Note 1. Partial dependence is calculated by the following equation:

.?u(x,)=li}(xx’xi_(-)’ i=l,2""n
n =

where x, refers to a predictor variable of interest, and x,. the other

predictor variables.
Note 2. The performance evaluation indexes used in this study are
described below.
Index Formula
TP+TN
Accuracy —_————
TP+TN +FP+FN
Specificit il
pecificity IN+FP
Precisi P
recision TP+FP
Recall P
TP+FN
Percisionx Recall
- 22—
F-score Percision+ Recall
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